Community detection for networks with unipartite and bipartite structure
نویسندگان
چکیده
Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 16 (2014) 093001 1367-2630/14/093001+27$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks. S Online supplementary data available from stacks.iop.org/NJP/16/093001/ mmedia
منابع مشابه
Mathematical Model and Algorithm for Link Community Detection in Bipartite Networks
In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to ...
متن کاملEfficiently inferring community structure in bipartite networks
Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing approaches to bipartite community detection have drawbacks, including implicit parameter choices, loss of information through one-mode projections, a...
متن کاملModularity Density for Evaluating Community Structure in Bipartite Networks
Bipartite networks are an important category of complex networks in human social activities. Newman and Girvan proposed a measurement called modularity to evaluate community structure in unipartite networks called modularity. Due to the success of modularity in unipartite networks, bipartite modularity is developed according to different understandings of community in bipartite networks which a...
متن کاملModule identification in bipartite and directed networks.
Modularity is one of the most prominent properties of real-world complex networks. Here, we address the issue of module identification in two important classes of networks: bipartite networks and directed unipartite networks. Nodes in bipartite networks are divided into two nonoverlapping sets, and the links must have one end node from each set. Directed unipartite networks only have one type o...
متن کاملA evolutionary method for finding communities in bipartite networks
In a recent paper, Zhan, Zhang, Guan, and Zhou [Phys. Rev. E 83, 066120 (2011)] presented a modified adaptive genetic algorithm (MAGA) tailored to the discovery of maximum modularity partitions of the node set into communities in unipartite, bipartite, and directed networks. The authors claim that "detection of communities in unipartite networks or in directed networks can be transformed into t...
متن کامل